明古微半

MGM   SEMICONDUCTOR

136 7022 5257
业务热线:

碳化硅功率器件+电驱方案

新能源汽车.充电桩.工业电源.光伏储能.电力电子.低空飞行器...

技术学院

STUDY

全SiC功率模块 运用要点:栅极驱动 全SiC功率模块的开关损耗
来源: | 作者:张工 | 发布时间: 2023-12-19 | 192 次浏览 | 分享到:

运用要点:栅极驱动 其1

从本文开始将探讨如何充分发挥全SiC功率模块的优异性能。此次作为栅极驱动的“其1”介绍栅极驱动的评估事项,在下次“其2”中介绍处理方法。

栅极驱动的评估事项:栅极误导通

首先需要了解的是:接下来要介绍的不是全SiC功率模块特有的评估事项,而是单个SiC-MOSFET的构成中也同样需要探讨的现象。在分立结构的设计中,该信息也非常有用。

“栅极误导通”是指在高边SiC-MOSFET+低边SiC-MOSFET的构成中,SiC-MOSFET切换(开关)时高边SiC-MOSFET的栅极电压产生振铃,低边SiC-MOSFET的栅极电压升高,SiC-MOSFET误动作的现象。通过下面的波形图可以很容易了解这是什么样的现象。

棚极驱动的评估事项:棚极误导通

绿色曲线表示高边SiC-MOSFET的栅极电压VgsH,红色曲线表示低边的栅极电压VgsL,蓝色曲线表示Vds。这三个波形都存在振铃或振荡现象,都不容乐观。比如一旦在低边必须关断的时间点误导通的话,将有可能发生在高边-低边间流过直通电流(Flow-through Current)等问题。

这种现象是SiC-MOSFET的特性之一–非常快速的开关引起的。低边栅极电压升高是由切换到高边导通时产生的Vd振铃、和低边SiC-MOSFET的寄生栅极寄生电容引起的。

全SiC功率模块的开关速度与寄生电容

下面通过与现有IGBT功率模块进行比较来了解与栅极电压的振铃和升高有关的全SiC功率模块的开关速度和寄生电容的特征。

开关速度:与IGBT的比较

下图是开关导通时和开关关断时的dV/dt、即开关速度与IGBT模块的比较。SiC模块的开关导通时的dV/dt与IGBT模块几乎相同,依赖于外置的栅极电阻Rg。关断时SiC模块没有像IGBT那样的尾电流,因此显示与导通时同样依赖于外置栅极电阻Rg的dV/dt。

开关速度比较

寄生电容:与IGBT的比较

MOSFET(IGBT)存在栅极-漏极(集电极)间的Cgd(Cgc)、栅极-源极(发射极)间的Cgs(Cge)、漏极(集电极)-源极(发射极)间的Cds(Cce)这些寄生电容。其中与低边栅极电压升高相关的是Cgd和Cgs。

下面的左图表示Cgd(Cgc)、Cgs(Cge)与Vds(Vce)之间的关系。未指定是SiC模块的曲线是IGBT的曲线。如各曲线所示,相应寄生电容同等,其特性也相似。右图为Cgd(Cgc)和Cgs(Cge)的比,被称为“栅极寄生电容比”,是对低边栅极电压升高有影响的参数。这里给出了同等程度的寄生电容,以便根据左图的电容值直观地考量。

寄生电容比较

栅极电压升高的机制

前面也提到过,低边SiC-MOSFET的栅极电压升高是由高边SiC-MOSFET开关导通时的dV/dt速度太快引起的,因低边SiC-MOSFET的栅极寄生电容与栅极阻抗而产生栅极电压升高⊿Vgs。

SiC-MOSFET的开关导通速度依赖于外置栅极电阻Rg,如上图所示,Rg越小则dV/dt越大。

关于栅极寄生电容,它是本质上存在且无法调整的,因此在存在一定量的栅极寄生电容的前提下,将低边栅极阻抗作为⊿Vgs的因数,来探讨可调整的外置栅极电阻Rg。

该图表示低边栅极电压升高⊿Vgs和高边外置栅极电阻Rg_H及低边外置栅极电阻Rg_L之间的关系。从图中可以看出,高边的Rg_H越小,即dV/dt速度越快,以及低边的外置栅极电阻越大,⊿Vgs越大。
棚极电压升高DVgs的产生机制

下次将根据以上这些考察来探讨对栅极电压升高的处理方法。

 


全SiC功率模块的开关损耗

全SiC功率模块与现有的功率模块相比具有SiC与生俱来的优异性能。本文将对开关损耗进行介绍,开关损耗也可以说是传统功率模块所要解决的重大课题。

全SiC功率模块的开关损耗

全SiC功率模块与现有的IGBT模块相比,具有1)可大大降低开关损耗、2)开关频率越高总体损耗降低程度越显著 这两大优势。

下图是1200V/300A的全SiC功率模块BSM300D12P2E001与同等IGBT的比较。左图是基于技术规格书中的规格值的比较,Eon为开关导通损耗,Eoff为开关关断损耗、Err为恢复损耗。全SiC功率模块的Eon和Eoff都显著低于IGBT,至于Err,由于几乎没有Irr而极其微小。结论是开关损耗总共可以降低77%。这是前面提到的第一个优势。

20171128_graf_03

右图是以PWM逆变器为例的损耗仿真,是开关频率为5kHz和30kHz时开关损耗和传导损耗的总体损耗。在与IGBT模块的比较中,5kHz条件下总体损耗降低了约22%。橙色部分表示开关损耗,降低的损耗大部分是开关损耗。在30kHz条件下,首先是IGBT的开关损耗大幅增加。众所周知,这是IGBT高速开关所面对的课题。全SiC功率模块的开关损耗虽然也有所增加,但其增加比例远低于IGBT模块。可以看出结论是:在30kHz条件下,总体损耗可降低约60%。这是前面提到的第二个优势。

可见这正如想象的一样,开关损耗小是由组成全SiC模块的SiC元件特性所带来的。关于SiC-MOSFET和SiC肖特基势垒二极管的相关内容,有许多与Si同等产品比较的文章可以查阅并参考。

采用第三代SiC沟槽MOSFET,开关损耗进一步降低

ROHM在行业中率先实现了沟槽结构SiC-MOSFET的量产。SiC功率模块已经采用了这种沟槽结构的MOSFET,使开关损耗在以往SiC功率模块的基础上进一步得以降低。

右图是基于技术规格书的规格值,对1200V/180A的IGBT模块、采用第二代DMOS结构SiC-MOSFET的全SiC功率模块BSM180D12P2C101、以及采用第三代沟槽结构MOSFET的BSM180D12P3C007的开关损耗比较结果。

相比IGBT,第二代的开关损耗降低了约60%,而第三代在第二代的基础上又降低了约42%,与IGBT相比则开关损耗可降低约77%。

 

20171128_graf_04

20171128_graf_05

如上所述,全SiC功率模块的开关损耗大大低于同等IGBT模块的开关损耗,而且开关频率越高,与IGBT模块之间的损耗差越大。这就意味着对于IGBT模块不擅长的高速开关工作,全SiC功率模块不仅可以大幅降低损耗还可以实现高速开关。


SiC MOS

我们要把有限的精力用在服务客户上,维护网站可能会延迟,想了解我们的最新动态,建议您关注我们的“微信公众号”或直接致电联系我们!谢谢!